

1 **Fire-regime variability impacts forest carbon dynamics for centuries to millennia**

2

3 **Tara W. Hudiburg¹, Philip E. Higuera², and Jeffrey A. Hicke³**

4 ¹Department of Forest, Rangeland, and Fire Sciences
5 University of Idaho
6 875 Perimeter Dr.
7 Moscow, ID 83844-1133

8
9 ²Department of Ecosystem and Conservation Sciences
10 University of Montana
11 32 Campus Dr.
12 Missoula, MT 59812

13
14 ³Department of Geography
15 University of Idaho
16 875 Perimeter Dr.
17 Moscow, ID 83844-3021

18
19 ***Corresponding Author**
20 thudiburg@uidaho.edu
21 phone: 208-885-7044
22 fax: 208-885-5534

23
24 *Running header:*
25 Fire-regime variability impacts on forest carbon

26
27 *Keywords:*
28 Fire regimes, forest carbon, paleoecology, ecosystem modeling, Rocky Mountains, Rocky
29 Mountain National Park, lodgepole pine

30
31 *Type of paper:*
32 Primary research article

33

34 **Abstract**

35 Wildfire is a dominant disturbance agent in forest ecosystems, shaping important biogeochemical
36 processes including net carbon (C) balance. Long-term monitoring and chronosequence studies
37 highlight a resilience of biogeochemical properties to large, stand-replacing, high-severity fire
38 events. In contrast, the consequences of repeated fires or temporal variability in a fire regime
39 (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that
40 such variability could strongly influence forest C trajectories for millennia. Here we combine a
41 4500-year paleoecological record of fire activity with ecosystem modeling to investigate how
42 fire-regime variability impacts soil C and net ecosystem carbon balance. We found that C
43 trajectories in a paleo-informed scenario differed significantly from an equilibrium scenario
44 (with a constant fire return interval), largely due to variability in the timing and severity of past
45 fires. Paleo-informed scenarios contained multi-century periods of positive and negative net
46 ecosystem C balance, with magnitudes significantly larger than observed under the equilibrium
47 scenario. Further, this variability created legacies in soil C trajectories that lasted for millennia,
48 and was of a magnitude great than simulated under an equilibrium, climate-warming scenario
49 (i.e., 2 °C growing season warming). Our results imply that fire-regime variability is a major
50 driver of C trajectories in stand-replacing fire regimes. Predicting carbon balance in these
51 systems, therefore, will depend strongly on the ability of ecosystem models to represent a
52 realistic range of fire-regime variability over the past several centuries to millennia.

53 **1. Introduction**

54 Wildfire is a pervasive disturbance agent in forest ecosystems, strongly shaping ecosystem
55 structure and function, including vegetation composition, nutrient cycling, and energy flow.
56 While the immediate impacts of disturbance can be dramatic, the longevity of these impacts is
57 less clear. In ecosystems where disturbance is historically prevalent, vegetation and
58 biogeochemical properties typically return to pre-disturbance conditions over years to decades
59 (Dunnette et al., 2014; McLauchlan et al., 2014), motivating the concept of “biogeochemical
60 resilience” (Smithwick, 2011). Characterizing biogeochemical resilience emphasizes
61 understanding pool sizes and changes to inputs or outputs of key elements (McLauchlan et al.,
62 2014; Smithwick, 2011). In the context of wildfire, biogeochemical resilience is determined by
63 pool sizes prior to a fire event, elemental losses and transformations that occur during and shortly
64 after a fire event (e.g., from volatilization and erosion), and post-fire changes in elemental pools,
65 which in turn are determined by the rate and composition of post-fire revegetation (McLauchlan
66 et al., 2014; Schlesinger et al., 2015; Smithwick, 2011).

67 Changes in the characteristic frequency or severity of fire (i.e., the fire regime) are therefore
68 predicted to lead to compounding and potentially long-lasting changes or shifts in
69 biogeochemical states. For example, increased disturbance frequency can deplete key growth-
70 limiting nutrients (Yelenik et al., 2013), potentially influencing ecosystem trajectories for
71 decades to centuries (McLauchlan et al., 2014). Net ecosystem carbon balance (NECB) is also
72 highly sensitive to disturbance (Hudiburg et al., 2011), and while NECB trends towards 0 under
73 a uniform disturbance regime (Chapin et al., 2006), shifting disturbance regimes may alter
74 NECB over centuries to millennia (Goetz et al., 2012; Kelly et al., 2016). While these ideas have
75 a strong conceptual basis and empirical support on decadal timescales, we have lacked the data
76 needed to test them over longer timescales – and to consider their implications for future
77 projections – until only recently.

78 Coupling paleo observations (i.e. “paleo-informed”) with ecosystem modeling provides an
79 important tool for assessing the impacts of fire-regime variability on biogeochemical dynamics
80 by combining the mechanistic representation of ecosystem processes with actual patterns of fire
81 activity reconstructed from the past. For example, in Alaskan boreal forests paleo-informed
82 ecosystem modeling highlights fire as the dominant control on C cycling over the past

83 millennium, far outweighing the effects of climate variability (Kelly et al., 2016). Given the
84 significance influence of fire, estimates of modern C states ("initial conditions" for modeling
85 future C states) can be highly sensitive to assumptions about the past fire activity. Ecosystem
86 models typically require a 'spin up' period to equilibrate C and N pools and can include a fixed
87 disturbance interval (e.g., a constant fire return interval), resulting in ecosystem C and N
88 trajectories that are in 'equilibrium' with climate, ecosystem properties, and the disturbance
89 regime. Following centuries of equilibrium, known disturbance events from the historical record
90 are included, and the final results are used for initial conditions (baseline) for future scenarios.
91 However, paleo-informed disturbance histories spanning many centuries can result in initial
92 conditions that differ from equilibrium runs. In the boreal example, forests were a small net C
93 source over the past several decades in paleo-informed simulations, whereas forests were a small
94 net C sink when a constant fire return interval was assumed (Kelly et al., 2016). We would
95 expect a similar sensitivity of C dynamics to fire in other stand-replacing fire regimes, although
96 specific trajectories and impacts on modern states could vary widely, contingent on the specific
97 history of fire activity.

98 Here, we pair a paleoecological record of vegetation and wildfire activity in a subalpine forest
99 (Dunnette et al., 2014) with an ecosystem model to evaluate the sensitivity of forest ecosystem
100 processes to fire-regime variability over a 4500-year period. Our paleoecological record reveals
101 the timing and severity of past wildfire activity within a subalpine forest watershed that was
102 consistently dominated by lodgepole pine (*Pinus contorta*). We use this record to drive fire
103 disturbances in an ecosystem model and test alternative hypotheses that help reveal the potential
104 patterns and mechanisms causing past ecosystem change, focusing on a slowly varying carbon
105 pool (soil C) and net ecosystem carbon balance (NECB). The resulting trends provide theoretical
106 insight into how observed fire-regime variability can affect carbon trajectories from decadal to
107 millennial scales. Through a series of paleo-informed and control modeling scenarios, we
108 address three key questions about the biogeochemical impacts and legacies of wildfire activity:
109 (1) how does centennial-to-millennial-scale variability in fire activity impact biogeochemical
110 processes that regulate soil C and NECB; (2) for how long does the legacy wildfire activity
111 impact current ecosystem states; and (3) what is the magnitude of these impacts relative to the
112 impacts of climatic warming. Our results highlight the importance of fire activity in shaping

113 ecosystem C dynamics across a range of time scales, and they have important implications for
114 projecting future ecosystem states under scenarios of climate and disturbance-regime change.

115 **2 Materials and Methods**

116 **2.1 Study sites**

117 We studied the biogeochemical consequences of fire-regime variability by informing the
118 DayCent model with fire history data derived from sedimentary charcoal preserved in Chickaree
119 Lake, Colorado (Dunnette et al., 2014). Chickaree Lake (40.334 °N, 105.841 °W, 2796 m above
120 sea level) is a small, deep lake (c. 1.5 ha surface area; 7.9 m depth) in a lodgepole pine-
121 dominated subalpine forest in Rocky Mountain National Park. The even-aged forest surrounding
122 the lake dates to a 1782 CE fire (Sibold et al., 2007). Mean monthly temperature is -8.5 °C in
123 January and 14 °C in July, and average total annual precipitation is 483 mm (Western Regional
124 Climate Center 1940-2013 observations, from Grand Lake, CO). Detailed methods for the
125 collection and analysis of this record are found in Dunnette (2014). Briefly, the 4500-year record
126 has an average sample resolution of four years, and a chronology constrained by 25 accelerator
127 mass spectrometry ^{14}C dates and 13 ^{210}Pb dates spanning the upper 20 cm. Pollen analysis
128 indicates that the site was continuously dominated by lodgepole pine for the duration of the
129 record presented here, with successional changes following inferred fire events. Dunnette (2014)
130 used macroscopic charcoal and magnetic susceptibility (a soil-erosion proxy) from Chickaree
131 Lake to infer the timing and severity of wildfires, identifying “high-severity catchment fires”
132 (those with associated erosion) and “lower severity/extralocal fires” (those without associated
133 soil erosion). Thus, while all fire events were likely stand-replacing, the difference between these
134 two fire types was the association with soil erosion. Here, we use the Chickaree Lake fire history
135 record to inform the disturbance component of the DayCent ecosystem model by prescribing the
136 timing and severity of past fire events within a simulated lodgepole pine-dominated subalpine
137 forest.

138 **2.2 Model description**

139 DayCent is the globally recognized daily timestep version of the biogeochemical model
140 CENTURY, widely used to simulate the effects of climate and disturbance on ecosystem
141 processes including forests worldwide (Bai and Houlton, 2009; Hartman et al., 2007; Savage et

142 al., 2013). DayCent is a logical choice for our purposes, because it includes soil C pools that
143 have long turnover times, spanning months to 4000 years, and thus can represent long-term
144 ecosystem change.

145 Required inputs for the model include vegetation cover, daily precipitation and temperature, soil
146 texture, and disturbance histories. DayCent calculates potential plant growth as a function of
147 water, light, and soil temperature, and limits actual plant growth based on soil nutrient
148 availability. The model includes three soil organic matter (SOM) pools (active, slow, and
149 passive) with different decomposition rates, above and belowground litter pools, and a surface
150 microbial pool associated with the decomposing surface litter. Plant material is split into
151 structural and metabolic material as a function of the lignin to nitrogen ratio of the litter (more
152 structural with higher L:N ratios). The active pool (microbial) has short turnover times (1-3
153 months) and the slow SOM pool (more resistant structural plant material) has turnover times
154 ranging from 10 to 50 years depending on the climate. The passive pool includes physically and
155 chemically stabilized SOM with turnover times ranging from 400 to 4000 years. For this study,
156 DayCent was parameterized to model soil organic carbon dynamics to a depth of 30 cm.

157 Disturbances in DayCent are prescribed and can be parameterized to reflect “severity” through
158 associated impacts to the ecosystem (e.g., biomass killed, nitrogen lost, soil eroded). Model
159 outputs include soil C and N stocks, live and dead biomass, above- and below-ground net
160 primary productivity (NPP), heterotrophic and autotrophic respiration, fire emissions, and net
161 ecosystem production (NEP, defined as the difference between NPP and heterotrophic
162 respiration). We define net ecosystem carbon balance (NECB) as the difference between NEP
163 and fire emissions.

164 **2.3 Model parameterization**

165 DayCent submodels associated with tree physiological parameters, site characteristics, soil
166 parameters, and disturbance events were modified using available site-specific observations
167 (Dunnette et al., 2014; Sibold et al., 2007), values from the literature (Kashian et al., 2013;
168 Turner et al., 2004), and publically available climate and soils databases. Climate data required
169 for DayCent include daily minimum and maximum temperature and precipitation which were
170 obtained for a 30-yr period from DAYMET (Thornton, 2012). For all model runs, the 30-yr

171 climate dataset was “recycled” for the duration of the run; thus, unless specified by a scenario
172 name, climate was functionally non-varying over the duration of the simulations (beyond the
173 variability in the 30-yr dataset). Soil texture and classification were identified using the NRCS
174 SSURGO database (NRCS, 2010). Model input and parameterization files are available for
175 download as supporting information files.

176 We defined two types of stand-replacing fire to distinguish between the two types of fires
177 identified in the paleo record. High-severity catchment fires from the paleo record were
178 simulated by 95% tree mortality and a soil erosion event with $\sim 1 \text{ Mg ha}^{-1}$ of soil loss from the
179 watershed (Miller et al., 2011); we refer to these as high-severity fires with erosion. Lower-
180 severity/extralocal fires from the paleo record were simulated by 95% tree mortality with no
181 associated soil-erosion event; we refer to these as high-severity fires without erosion. Thus, the
182 key difference between the two fire types simulated is the associated soil erosion. After
183 parameterization, we evaluated modeled aboveground NPP, soil C, total ecosystem carbon, and
184 disturbance C losses against observations of similar-aged lodgepole pine stands in the Central
185 Rockies ecoregion (Hansen et al., 2015; Kashian et al., 2013; Turner et al., 2004).

186 **2.4 Model experiments**

187 We performed a series of modeling experiments to address our questions using the Chickaree
188 Lake paleo-fire record, varied disturbance histories, and varied climate (Table 1). First, DayCent
189 was ‘spun up’ and equilibrated to soil C and NPP levels characteristic of mature lodgepole pine
190 stands in the region with a constant return interval of 145 years between high-severity fires with
191 erosion, replicating the estimated fire rotation period (and mean fire-return interval) for the
192 broader study area (Sibold et al., 2007). This spinup period lasted for 2000 years, and it
193 represents what would be done for model use, in the absence of the long-term fire history
194 information from the paleo record. All experimental simulations were extended from this spinup
195 equilibrium simulation starting 4500 years before present (BP, where “present” is 1950 CE) and
196 running through 2010 CE, for a total of 4561 simulation years. We defined our model simulation
197 that would normally be used in the absence of paleo-informed disturbance histories (“equilibrium
198 scenario”) as a continuation of the equilibrated spinup with the same climate and fire regime,
199 with only the last known fire event (1782 CE) explicitly simulated.

200 In addition to this equilibrium scenario, we implemented four additional scenarios that together
201 helped illustrate the duration, magnitude, and relative importance of fire-induced changes to
202 forest biogeochemistry. (1) To test the impacts of variability in fire timing and severity on
203 important biogeochemical states, we compared the equilibrium scenario to a “paleo-informed
204 scenario,” which had a mean fire return interval of 120 years for all fires, and 334 years for the
205 high-severity fires with erosion. (2) To identify the duration of a legacy effect from fire-regime
206 variability, we constructed eight “partially paleo-informed scenarios”, which included
207 increasingly longer periods of information from the paleo-fire record, spanning the past 500 to
208 4000 years, in 500-year increments that ended in 2010 CE (“Paleo₅₀₀”, “Paleo₁₀₀₀”, ...,
209 “Paleo₄₀₀₀”; Figure 1a). (3) To identify how a systematic shift in fire frequency would impact
210 carbon balance, we created two additional scenarios with shortened and lengthened fire return
211 intervals. Beginning with the observed paleo-fire record, we modified each interval between fires
212 to be (a) shortened by 25% (“Increased fire frequency”) or (b) lengthened (“Decreased fire
213 frequency”) by 25% (Figure 1b). The corresponding mean fire return intervals of these two
214 additional runs were (a) 90 years and (b) 155 years. (4) Finally, to place the impacts of fire-
215 regime variability into the context of projected future climate change, we compare results to both
216 paleo-informed scenarios and equilibrium scenarios that included a constant 2 °C increase in
217 temperature (Figure 2; “Equilibrium + 2 deg C”). Specifically, we increased the minimum and
218 maximum daily temperatures of the DAYMET climate record for May through September by 2
219 °C, representing a very simple growing-season warming scenario. Because the fire events are
220 decoupled from climate, the prescribed warming did not impact the fire history. While we
221 recognize that fire and climate are closely coupled, these scenarios are considered experiments
222 that reveal the impacts of warming alone. The relative difference between the two scenarios (e,
223 paleo-informed and equilibrium with warming) and the equilibrium scenario is used to gauge the
224 relative impacts of fire-regime variability vs. warming on carbon balance.

225 We evaluated the results from each scenario in terms of modern end points of soil C, soil N, and
226 NECB as well as total cumulative changes in NECB over the entire record. We define
227 cumulative NECB as a running total, such that the sum at any given year represents the
228 integrated impacts of past disturbance events. For example, when return intervals between
229 disturbance events are shorter than C recovery times, cumulative NECB will remain negative.
230 Finally, we considered uncertainty in our estimates based on the uncertainty in the reconstructed

231 fire history record and our assumptions about soil erosion. While there is also uncertainty
232 associated with modeled estimates of soil C, NECB, and other C fluxes presented, we are not
233 attempting to provide estimates that are any more precise than measured modern states (e.g.
234 STATSGO derived soil C). Rather, we compare the variability in ecosystem states arising from
235 fire-regime variability to the uncertainties in the model that are revealed when evaluated against
236 modern observations from the literature.

237 **3 Results and Discussion**

238 **3.1 Model parameterization and evaluation**

239 Our modeled estimates of modern soil C (to 30 cm) of 54 and 62 Mg C ha⁻¹, for the
240 equilibrium and paleo-informed scenario, respectively (Figure 2), compare well with STATSGO
241 (NRCS, 2010) estimates of 66 ± 16 Mg C ha⁻¹ for the Chickaree Lake region, and with
242 measurements of current soil C (to 30 cm) ranging 51 to 73 Mg C ha⁻¹ in similarly aged (> 200
243 year) Rocky Mountain *Pinus* stands (Bradford et al., 2008). Modeled estimates of aboveground
244 NPP were also in agreement with observations averaging 156 and 172 g C m⁻² for the
245 equilibrium and paleo-informed simulations, respectively, compared to estimates from the
246 Northern or Central Rockies ranging from 100 to 200 g C m⁻² (Hansen et al., 2015). Finally, fire
247 emissions from our modeled estimates range from 20 to 30% loss of aboveground C, broadly in
248 agreement with other studies (Campbell et al., 2007; Smithwick et al., 2009).

249

250 **3.2 Fire-regime variability impacts soil C and NECB**

251 When DayCent was driven with the paleo-informed fire history, soil C accumulation was
252 8 Mg ha⁻¹ more at the end of the simulation than in the equilibrium scenario (Figure 1). Total
253 NEP summed over the 4561-year period was also higher in the paleo-informed scenario (1276
254 Mg C ha⁻¹) compared with the equilibrium scenario (1171 Mg C ha⁻¹), directly reflecting NPP
255 rates that were higher than heterotrophic respiration (Figure 3, black bar). In the paleo-informed
256 scenario, cumulative emissions due to combustion losses (i.e., “fire emissions”) were lower than
257 NEP over the entire record, resulting in a cumulative NECB of 27 Mg C ha⁻¹ more than the
258 equilibrium scenario (Figure 3; black bars).

259 The paleo-informed scenario showed substantial variability in soil C (Figure 2) and
260 NECB (Figure 4) trajectories, and higher total accumulations relative to the equilibrium scenario.
261 In fact, the range of variability in soil C over the paleo-informed simulation, from c. 45 to 65 Mg

262 C ha⁻¹, nearly spanned the range of observations of current soil C (to 30 cm) in similarly aged (>
263 200 year) Rocky Mountain *Pinus* stands (Bradford et al., 2008). For the first ~2000 years of the
264 paleo-informed scenario, long-term mean soil C was similar to baseline levels of soil C in the
265 equilibrium scenario (Figure 2), averaging around 54 Mg C ha⁻¹, though with substantial
266 variability on centennial time scales. Following this period, the soil C trajectory increased
267 distinctly in the paleo-informed scenario during a 500-year period with only one high-severity
268 fire without erosion (c. 2500 cal yr BP). Despite a return to a mean fire return interval closer to
269 the equilibrium scenario, soil C persisted at this elevated level for the following 2000 years (c.
270 2000 cal yr BP to present), resulting in 8 Mg C ha⁻¹ (15%) more than the equilibrium scenario at
271 the end of the simulation (2010 CE). A similar trend was observed for NECB (Figure 4), where
272 the paleo-informed scenario maintained a lower NECB in the first half of the record compared
273 the second half. In the latter half of the record, NECB was more consistently positive, ultimately
274 storing more ecosystem C than the equilibrium scenario. The dynamism in NECB over time is
275 consistent with the findings of Kelly (2016). Together, this work highlights the value of
276 examining the ecosystem impacts of past fire-regime variability, which may include disturbance-
277 free or intensified disturbance periods that are not currently represented in or predicted by
278 ecosystem models.

279 **3.3 Impacts of fire-regime variability last for millennia and can outweigh climate impacts**

280 We compared the partially paleo-informed scenarios to the equilibrium scenario to determine the
281 length of time necessary to arrive at the same inferences about soil C and NECB (i.e., endpoints
282 as totals) as in the full paleo-informed scenario. We found that disturbance-regime legacies
283 lasted for millennia. The number of years needed to simulate the CE 2010 values was between
284 2000 and 2500 years (Figure 5). Specifically, total NECB and soil C (endpoints that serve as
285 initial conditions for future modeled states) were nearly the same when using 2500 to 4500 years
286 of the paleo-fire record, but differed by more than 1 Mg C ha⁻¹ when using only 500 to 2000
287 years of the paleo-fire record.

288 Differences between the paleo-informed and equilibrium scenario were an order of magnitude
289 greater than differences between the equilibrium scenarios with and without a uniform 2 °C
290 warming during the growing season. Warming resulted in a small net decrease in soil C of 0.3
291 Mg C ha⁻¹, and a reduction in NECB by 0.2 Mg C ha⁻¹ relative to equilibrium scenario. Warming

292 with a constant fire-return interval resulted in a small proportional increases in both NPP and R_h ,
293 while NEP did not change.

294 Our results imply that C dynamics in lodgepole pine forests are far more sensitive to variability
295 in the timing and severity of fire activity than to changes in climate. This inference is also
296 consistent with findings from strand-replacing fire regimes in Alaskan boreal forests, where C
297 dynamics over the past 1200 years were more strongly shaped by fire activity than by climate
298 variability (Kelly et al., 2016).

299 **3.4 Implications for projecting future ecosystem states**

300 We varied the paleo-informed disturbance regimes by increasing and decreasing the frequency of
301 events by 25% to evaluate the effects of changing fire regimes. As expected, increased fire
302 frequency (i.e., shorter return intervals) resulted in a cumulative loss of ecosystem C compared
303 to equilibrium and paleo-informed scenarios, with NECB 13 Mg C ha^{-1} lower over the entire
304 simulation period (Figure 3), and with periods of net carbon loss lasting nearly 800 years (Figure
305 4; red line). The losses reflect large increases in fire emissions, without concurrent proportional
306 increases in NEP (Figure 3). In contrast, with decreased fire frequency (i.e., longer return
307 intervals), NECB increases by 67 Mg C ha^{-1} compared to equilibrium, and by 40 Mg C ha^{-1}
308 compared to the original paleo-informed scenario. Again, this is primarily due to an unbalanced
309 increase in NEP compared to fire emissions (Figure 3).

310 While the differences in NECB (27 Mg C more) and soil C (8 Mg C more) between the paleo-
311 informed and equilibrium scenarios are ultimately small for this single watershed, the impact of
312 fire-regime variability will depend on the synchrony of events at the regional and sub-continental
313 scales (Kelly et al., 2016). This is especially important when considering the trajectory of NECB
314 compared to equilibrium simulations during the periods of the paleo record when fire frequency
315 or severity were higher than in the past few centuries. Cumulative NECB was negative, serving
316 as a net source of C to the atmosphere, for periods of up to 500 years in the paleo-informed
317 scenario and up to 1000 years under scenarios with increased fire frequencies.

318 Given the strong correspondence between observed and simulated modern C stocks, uncertainty
319 in our estimates of past carbon dynamics stems primarily from uncertainty in the timing and
320 severity of past fires. The fire history reconstruction has an estimated temporal precision of

321 several decades (\pm 10-20 years) (Dunnette et al., 2014), but because C dynamics unfold over
322 centuries to millennia, this level of uncertainty has negligible effects on our inferences. The more
323 important source of uncertainty is the potential for false positives or false negatives in the fire
324 history reconstruction: failing to detect a fire that occurred in the past, or identifying a fire that
325 did not affect the Chickaree Lake watershed. While the Chickaree Lake record clearly identified
326 the most recent high-severity fire in the watershed (Dunnette et al., 2014), we cannot quantify
327 accuracy over the past four millennia. However, the range of variability in individual fire return
328 intervals reconstructed at Chickaree Lake (20-330 year) is consistent with the range of intervals
329 reconstructed from other lake-sediment records in Colorado subalpine forests (Calder et al.,
330 2015); 75-885, 45-750, 30-645, 30-1035 yr, (Higuera et al., 2014), suggesting that the C
331 dynamics highlighted here are not unique to this single fire history reconstruction.

332 In addition to fire timing, simulated C dynamics were also a function of variability in fire
333 severity, which in this study reflects the degree of soil erosion associated with stand-replacing
334 fire events. Watershed soil C losses were partially driven by the erosion events accompanying
335 the “high severity catchment fires” reconstructed in the paleo record. Because we have
336 prescribed both fire and erosion, we cannot predict the range of soil C loss that may occur due to
337 changes in precipitation regimes or if any erosion occurs with the lower severity events;
338 however, these results provide an estimate of expected changes in soil C for at least the higher
339 severity events. With expected changes to future precipitation regimes, including intensification
340 of rain events that could lead to increased erosion following fire (Larsen and MacDonald, 2007;
341 Miller et al., 2011), ecosystem model development should include prognostic erosion to account
342 for variability in this ecosystem process, especially at regional scales.

343 Finally, while simulated past carbon dynamics are also limited by the lack of paleoclimate data
344 driving DayCent, our results suggest that C dynamics are much more sensitive to the timing and
345 severity of fire events than to even relatively large changes in climate (e.g., 2 °C warming).
346 Further, because we have decoupled climate from fire by using prescribed fire events, the lack of
347 a paleoclimate does not affect our conclusions about the impacts of fire-regime variability on C
348 balance. While we used the paleo-informed modeling scenarios to test general hypotheses about
349 the impacts of fire-regime variability on biogeochemical dynamics, future efforts to simulate the

350 coupled climate-fire-ecosystem dynamics of the past clearly require independent paleoclimate
351 drivers.

352 **4 Summary and Conclusions**

353 Our simulations highlight fire-regime variability as a dominant driver of C dynamics in
354 lodgepole pine forests, with periods of unusually high or low fire activity creating legacies
355 lasting for centuries to millennia. Anticipating the impacts of future climate or disturbance-
356 regime change on forest carbon balance, therefore, should be done in the context of past
357 variability, with the duration dependent on the frequency and variability of relevant disturbance
358 processes. In the case of stand-replacing wildfires this requires information spanning at least
359 several centuries, and at Chickaree Lake this required several millennia, well beyond the length
360 of both observational and tree-ring records. While a number of studies have reported ecosystem
361 impacts or recovery times from individual fire events and then extrapolated to infer scenarios
362 that would lead to C gain or loss (Dunnette et al., 2014; Kashian et al., 2013; Mack et al., 2011;
363 Smithwick et al., 2009), our paleo-informed scenario highlights the importance of variability in
364 fire timing and severity for carbon cycling dynamics, independent of complete shifts in a fire
365 regime.

366 Our findings also have implications for Ecosystem and Earth system model development,
367 which are increasingly including prognostic fire components (Lasslop et al., 2014), primarily
368 driven by climate and fuels. Some models are also representing post-fire C and N dynamics
369 beyond simple combustion of woody pools. Development of these modules depends on
370 observations of fire and climate interactions, fuel availability, and post-fire C and N dynamics.
371 We suggest that this requires accurately accounting for the (often high) variability inherent in
372 stand-replacing fire regimes, independent from or in response to climate variability. Our results
373 indicate that even utilizing tree-ring record that span several centuries may not be sufficient to
374 capture this variability. Further development of prognostic (predictive) fire processes in
375 ecosystem models would benefit from the use of paleo-fire records to evaluate fire occurrence
376 and severity, and if combined with paleoclimate data, model algorithms could be further
377 improved to accurately reflect past variability.

378 The importance of fire-regime variability in determining ecosystem C dynamics implies
379 that equilibrium scenarios are a poor assumption for conceptualizing and simulating fire regimes
380 in ecosystem and Earth system models. Particularly at spatial scales larger than an individual
381 site, such a simplification may result in C-balance projections that are grossly overestimated or
382 underestimated. We demonstrate how variability in the timing and severity of disturbances can
383 potentially have long-lasting and compounding impacts on ecosystem states, such that modern
384 (or future) states can reflect dynamics that have unfolded over centuries to millennia. For our
385 modeling scenarios in lodgepole-pine dominated forests, the effects lasted approximately 2500
386 years. The duration of these legacies will depend on the ecosystem, and the degree of variability
387 in disturbance frequency and severity, relative to an equilibrium scenario. Ultimately, the
388 implications of fire-regime variability on biogeochemical states will depend strongly on the
389 synchrony of fire activity across spatial scales larger than a single watershed. If fire activity is
390 synchronized at landscape to regional scales, as in past (Calder et al., 2015; Marlon et al., 2012;
391 Morgan et al., 2008) and as anticipated for the future (Westerling et al., 2011) in the Rocky
392 Mountain forests, we would expect to see similar centennial- to millennial-scale dynamics in
393 biogeochemical states revealed here, which would have important implications for carbon
394 cycling, including potential feedbacks to CO₂ induced warming.

395

396

397 5 Data Availability

398 The following datasets are available at Dryad.org <url TBD>: the fire history record generated
399 from the charcoal record, the relevant model output, and model input files and climate input file.

400

401 *Author Contributions.* T.W. Hudiburg and P.E. Higuera designed the study, analyzed the data,
402 and prepared the manuscript with contributions from J.A. Hicke.

403 *Competing interests.* The authors declare that they have no conflict of interest.

404 *Acknowledgments.* We thank K. McLauchlan and B. Shuman for valuable discussions on these
405 topics. T.H. was supported by the NSF Idaho EPSCoR Program and by the National Science
406 Foundation under award number IIA-1301792. P.E.H was supported by the National Science
407 Foundation under award number IIA-0966472 and EF-1241846, and JAH was supported by the
408 Agriculture and Food Research Initiative of the USDA National Institute of Food and

409 Agriculture (Grant 2013-67003-20652) and the National Science Foundation under award
410 number DMS-1520873. The authors declare no competing financial conflicts of interests or other
411 affiliations with conflicts of interest with respect to the results of the paper.

412 **References**

413 Bai, E., and Houlton, B. Z.: Coupled isotopic and process- based modeling of gaseous nitrogen
414 losses from tropical rain forests, *Global Biogeochemical Cycles*, 23, 2009.

415 Bradford, J. B., Birdsey, R. A., Joyce, L. A., and Ryan, M. G.: Tree age, disturbance history, and
416 carbon stocks and fluxes in subalpine Rocky Mountain forests, *Global Change Biology*, 14,
417 2882-2897, 10.1111/j.1365-2486.2008.01686.x, 2008.

418 Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G., and Shuman, B. N.: Medieval
419 warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains, *Proceedings of
420 the National Academy of Sciences*, 112, 13261-13266, 2015.

421 Campbell, J., Donato, D., Azuma, D., and Law, B.: Pyrogenic carbon emission from a large
422 wildfire in Oregon, United States, *Journal of Geophysical Research: Biogeosciences*, 112,
423 G04014, 10.1029/2007JG000451, 2007.

424 Chapin, F., Woodwell, G., Randerson, J., Rastetter, E., Lovett, G., Baldocchi, D., Clark, D.,
425 Harmon, M., Schimel, D., Valentini, R., Wirth, C., Aber, J., Cole, J., Goulden, M., Harden, J.,
426 Heimann, M., Howarth, R., Matson, P., McGuire, A., Melillo, J., Mooney, H., Neff, J.,
427 Houghton, R., Pace, M., Ryan, M., Running, S., Sala, O., Schlesinger, W., and Schulze, E. D.:
428 Reconciling carbon-cycle concepts, terminology, and methods, *Ecosystems*, 9, 1041-1050, 2006.

429 Dunnette, P. V., Higuera, P. E., McLaughlan, K. K., Derr, K. M., Briles, C. E., and Keefe, M. H.:
430 Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine
431 watershed, *New Phytologist*, 203, 900-912, 2014.

432 Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A.,
433 McNulty, S., O'Halloran, T., Harmon, M., Meddens, A. J. H., Pfeifer, E. M., Mildrexler, D., and
434 Kasischke, E. S.: Observations and assessment of forest carbon dynamics following disturbance
435 in North America, *Journal of Geophysical Research-Biogeosciences*, 117,
436 10.1029/2011jg001733, 2012.

437 Hansen, E. M., Amacher, M. C., Van Miegroet, H., Long, J. N., and Ryan, M. G.: Carbon
438 Dynamics in Central US Rockies Lodgepole Pine Type after Mountain Pine Beetle Outbreaks,
439 Forest Science, 61, 665-679, 2015.

440 Hartman, M. D., Baron, J. S., and Ojima, D. S.: Application of a coupled ecosystem-chemical
441 equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain
442 watershed, ecological modelling, 200, 493-510, 2007.

443 Higuera, P. E., Briles, C. E., and Whitlock, C.: Fire- regime complacency and sensitivity to
444 centennial- through millennial- scale climate change in Rocky Mountain subalpine forests,
445 Colorado, USA, Journal of Ecology, 102, 1429-1441, 2014.

446 Hudiburg, T. W., Law, B. E., Wirth, C., and Luyssaert, S.: Regional carbon dioxide implications
447 of forest bioenergy production, Nature Climate Change, 1, 419-423, 10.1038/nclimate1264,
448 2011.

449 Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G., and Ryan, M. G.: Postfire changes
450 in forest carbon storage over a 300-year chronosequence of *Pinus contorta*-dominated forests,
451 Ecological Monographs, 83, 49-66, 10.1890/11-1454.1, 2013.

452 Kelly, R., Genet, H., McGuire, A. D., and Hu, F. S.: Palaeodata-informed modelling of large
453 carbon losses from recent burning of boreal forests, Nature Climate Change, 6, 79-82, 2016.

454 Larsen, I. J., and MacDonald, L. H.: Predicting postfire sediment yields at the hillslope scale:
455 Testing RUSLE and Disturbed WEPP, Water Resources Research, 43, n/a-n/a,
456 10.1029/2006WR005560, 2007.

457 Lasslop, G., Thonicke, K., and Kloster, S.: SPITFIRE within the MPI Earth system model:
458 Model development and evaluation, Journal of Advances in Modeling Earth Systems, 6, 740-
459 755, 10.1002/2013MS000284, 2014.

460 Mack, M. C., Bret-Harte, M. S., Hollingsworth, T. N., Jandt, R. R., Schuur, E. A. G., Shaver, G.
461 R., and Verbyla, D. L.: Carbon loss from an unprecedented Arctic tundra wildfire, Nature, 475,
462 489-492, 2011.

463 Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K.
464 J., Colombaroli, D., Hallett, D. J., and Power, M. J.: Long-term perspective on wildfires in the
465 western USA, Proceedings of the National Academy of Sciences, 109, E535-E543, 2012.

466 McLauchlan, K. K., Higuera, P. E., Gavin, D. G., Perakis, S. S., Mack, M. C., Alexander, H.,
467 Battles, J., Biondi, F., Buma, B., and Colombaroli, D.: Reconstructing disturbances and their
468 biogeochemical consequences over multiple timescales, *BioScience*, bit017, 2014.

469 Miller, M. E., MacDonald, L. H., Robichaud, P. R., and Elliot, W. J.: Predicting post-fire
470 hillslope erosion in forest lands of the western United States, *International Journal of Wildland
471 Fire*, 20, 982-999, 2011.

472 Morgan, P., Heyerdahl, E. K., and Gibson, C. E.: Multi- season climate synchronized forest fires
473 throughout the 20th century, northern Rockies, USA, *Ecology*, 89, 717-728, 2008.

474 NRCS: Soil Survey Staff, Natural Resources Conservation Service, United States Department of
475 Agriculture. Available online at <http://soildatamart.nrcs.usda.gov>. Soil Survey Geographic
476 (SSURGO) Database for Eastern US, 2010.

477 Savage, K. E., Parton, W. J., Davidson, E. A., Trumbore, S. E., and Frey, S. D.: Long- term
478 changes in forest carbon under temperature and nitrogen amendments in a temperate northern
479 hardwood forest, *Global change biology*, 19, 2389-2400, 2013.

480 Schlesinger, W. H., Dietze, M. C., Jackson, R. B., Phillips, R. P., Rhoades, C. C., Rustad, L. E.,
481 and Vose, J. M.: Forest biogeochemistry in response to drought, *Global change biology*, 2015.

482 Sibold, J. S., Veblen, T. T., Chipko, K., Lawson, L., Mathis, E., and Scott, J.: Influences of
483 secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park,
484 *Ecological Applications*, 17, 1638-1655, 2007.

485 Smithwick, E. A. H., Ryan, M. G., Kashian, D. M., Romme, W. H., Tinker, D. B., and Turner,
486 M. G.: Modeling the effects of fire and climate change on carbon and nitrogen storage in
487 lodgepole pine (*Pinus contorta*) stands, *Global Change Biology*, 15, 535-548, 10.1111/j.1365-
488 2486.2008.01659.x, 2009.

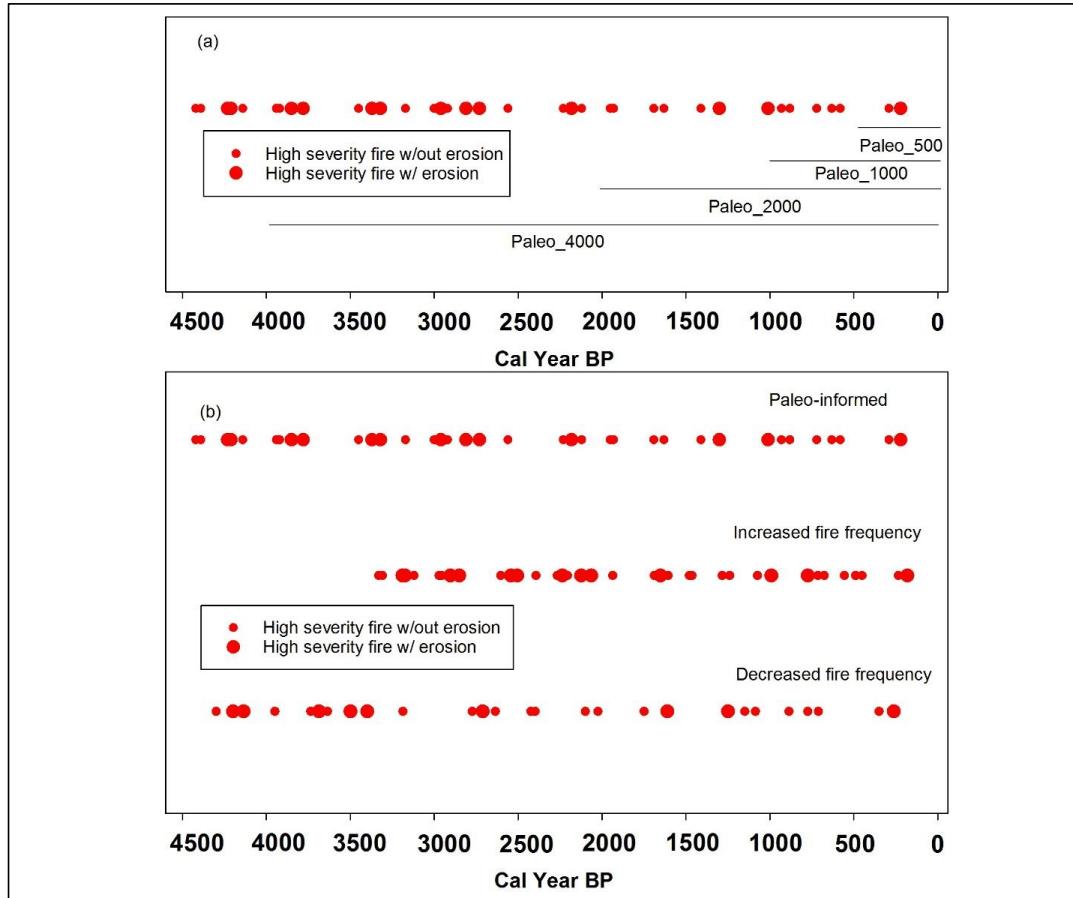
489 Smithwick, E. A. H.: Pyrogeography and biogeochemical resilience, in: *The Landscape Ecology
490 of Fire*, Springer, 143-163, 2011.

491 Thornton, P., MM Thornton, BW Mayer, N Wilhelmi, Y Wei, RB Cook . : Daymet: Daily
492 surface weather on a 1 km grid for North America, 1980 - 2008. In: Daymet: Daily surface
493 weather on a 1 km grid for North America, 1980 - 2008., Acquired online
494 (<http://daymet.ornl.gov/>) on 20/09/2012 from Oak Ridge National Laboratory Distributed Active
495 Archive Center, O. R., Tennessee, U.S.A. doi:10.3334/ORNLDAA/Daymet_V2. (Ed.),
496 Daymet: Daily surface weather on a 1 km grid for North America, 1980 - 2008., 2012.

497 Turner, M. G., Tinker, D. B., Romme, W. H., Kashian, D. M., and Litton, C. M.: Landscape
498 patterns of sapling density, leaf area, and aboveground net primary production in postfire
499 lodgepole pine forests, Yellowstone National Park (USA), *Ecosystems*, 7, 751-775, 2004.
500 Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and Ryan, M. G.:
501 Continued warming could transform Greater Yellowstone fire regimes by mid-21st century,
502 *Proceedings of the National Academy of Sciences*, 108, 13165-13170, 2011.
503 Yelenik, S., Perakis, S., and Hibbs, D.: Regional constraints to biological nitrogen fixation in
504 post- fire forest communities, *Ecology*, 94, 739-750, 2013.
505

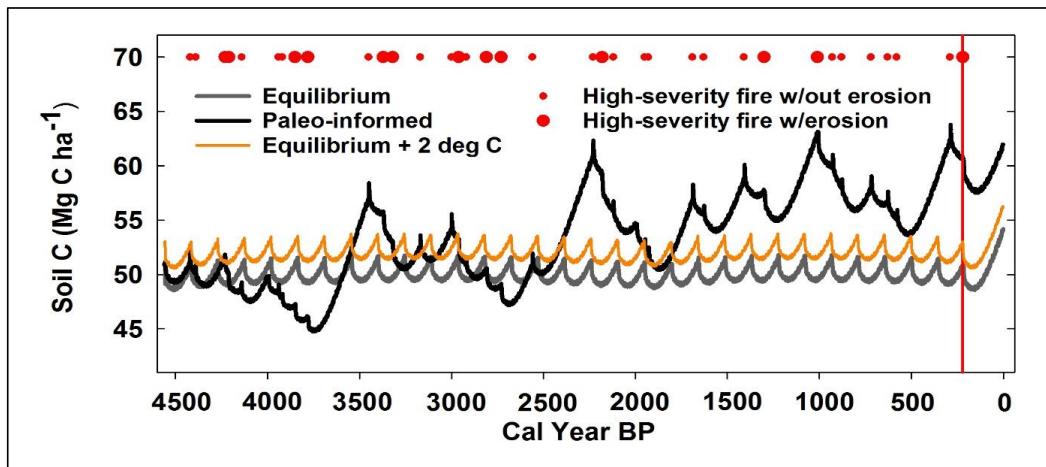
506 **Tables**

507 **Table 1.** Model simulation scenarios, including climate, fire regime, duration, and summary
 508 description.


Scenario	Purpose	Climate*	Fire Regime	Duration (yr)	Description
Spinup	Spin up C, N pools to equilibrium conditions	Ambient	Fixed 145-yr return interval; high severity with erosion	2000	DayCent initialization run for NPP and C to reach equilibrium conditions.
Equilibrium	Run with fixed fire interval	Ambient	Fixed 145-yr return interval; high severity with erosion	4561	Equilibrium run extended from the spinup run for the length of the paleo-fire record.
Paleo-Informed	Run with observed paleo-fire intervals and severity	Ambient	Paleo-record; high severity with and without erosion	4561	A 4561-year simulation with fires matching the timing and severity from the paleo-fire record.
Increased fire frequency	Run with paleo-fire intervals decreased by 25%	Ambient	Modified Paleo-record; 90-yr MFRI with high severity with and without erosion	4561	A 4561-year simulation with the timing between fires in the paleo-informed scenario decreased by 25%.
Decreased fire frequency	Run with paleo-fire intervals increased by 25%	Ambient	Modified Paleo-record ;155-yr MFRI with high severity with and without erosion	4561	A 4561-year simulation with the timing between fires in the paleo-informed scenario increased by 25%.
Paleo500... Paleo4000	Test influence of length of paleo record on modern states	Ambient	Paleo-record; high severity with and without erosion	500 - 4000	Branches from the equilibrium scenario at varying points in time, in 500-yr increments**. All scenarios ends in CE 2010.
Spinup_2deg	Same as Spinup but under warming scenario	+ 2 °C	Fixed 145-yr return interval; high severity with erosion	2000	DayCent initialization run for NPP and C to reach equilibrium conditions, with uniform warming.
Equilibrium_2deg	Same as Equilibrium but under warming scenario	+ 2 °C	Fixed 145-yr return interval; high severity with erosion	4561	Equilibrium run extended from the spinup run for the length of the paleo-fire record, with warming.
Paleo-Informed_2deg	Same as Paleo-Informed but under warming scenario	+ 2 °C	Paleo-record; high severity with and without erosion	4561	4561-year simulation extended from the spinup run, with fires matching the timing and severity from the paleo-fire record, with warming.

509 * 30-year recycled historical record (DayMet)

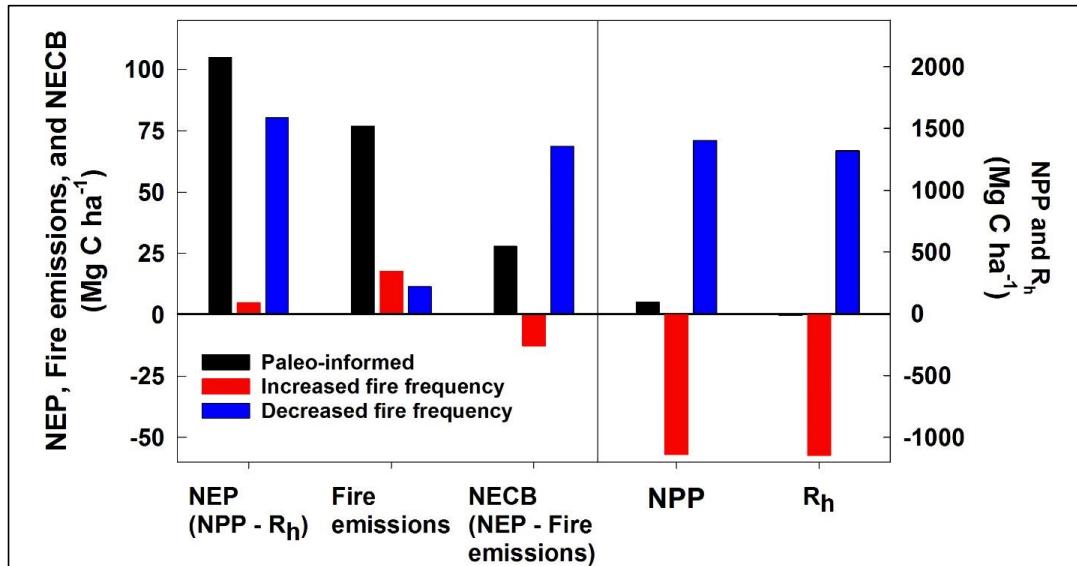
510 ** For example, the 500 year simulation starts in the year 1510 (CE) and runs until the end of 2009



513 **Figures**
514

515
516 **Figure 1.** Paleo-informed fire history scenarios used to drive the DayCent model. (a) Fire history
517 record from Chickaree Lake (red dots), with horizontal lines illustrating the duration of the
518 record used in the incremental “partial paleo-informed” scenarios (Paleo_500...4000). (b) The
519 same full Chickaree Lake fire history record used in the paleo-informed scenario (top), with the
520 two additional scenarios representing a 25% increase and 25% decrease in fire frequency
521 (bottom two scenarios).
522

523



524 **Figure 2.** Model simulations of equilibrium (grey), equilibrium plus a 2 °C warming (orange),
525 and paleo-informed (black) total soil carbon (C) in Mg C ha^{-1} . Each simulation branches from a
526 2000-year equilibrium spinup starting at the same soil C baseline and runs for 4561 years (4500
527 BP to CE 2010). Values for the warming scenario were increased by 2 Mg C ha^{-1} to be
528 distinguishable from the equilibrium scenario. The large red dots represent the years of the high-
529 severity fires with erosion, and the small red dots are high-severity fires without erosion used to
530 drive the paleo-informed model run. A constant 145-year fire return interval was used for the
531 equilibrium run. The vertical red line indicates the most recent stand-replacing fire (1782 CE),
532 reconstructed from the tree-ring record (Sibbold et al., 2007).

533

534

536 **Figure 3.** Accumulated anomalies in fluxes relative to equilibrium scenario, in Mg C ha⁻¹,
537 summed over the entire 4561-year simulation period. NEP, fire emissions, and NECB (left y-
538 axis) and NPP and Rh (right y-axis) for the paleo-informed (black), increased fire frequency
539 (red; 155 year mean FRI), and decreased fire frequency (blue; 90 year mean FRI) scenarios.
540 Negative (positive) numbers indicate a decrease (increase) in total carbon flux compared to the
541 equilibrium scenario.

542

543

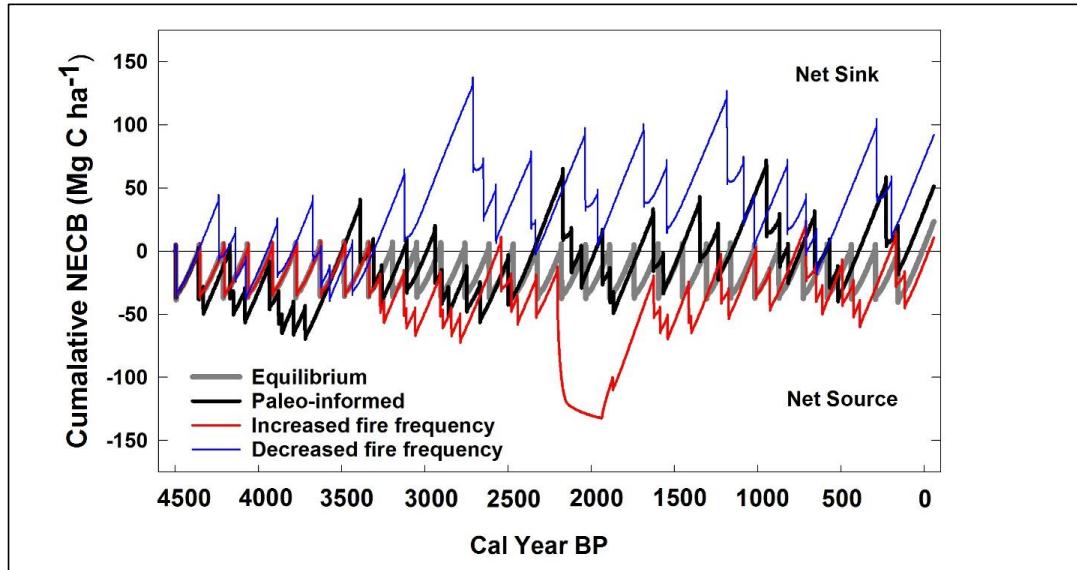
544

545

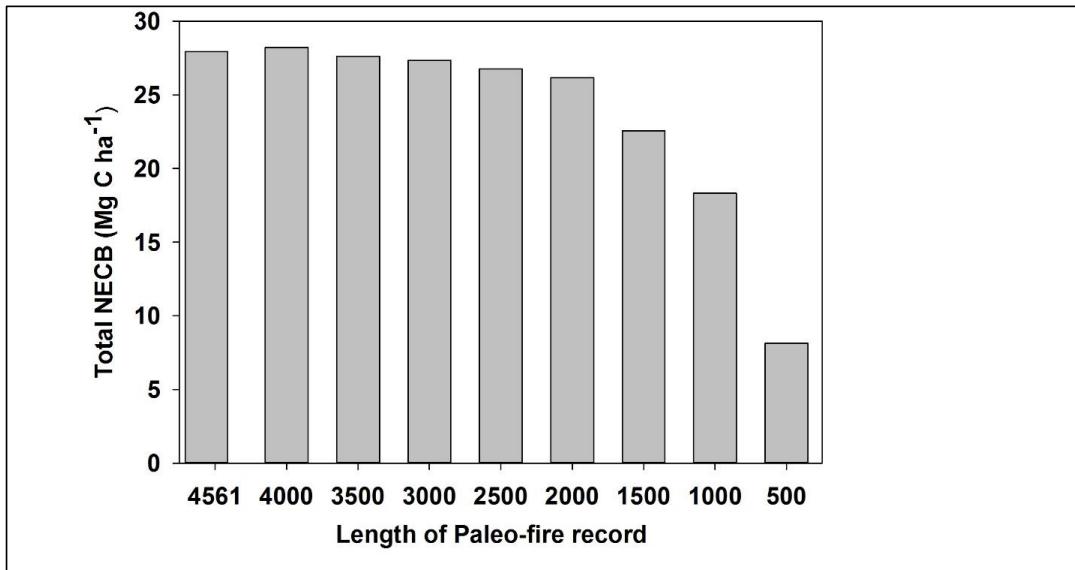
546

547

548


549

550


551

552

553

554
555 **Figure 4.** Trends in cumulative net ecosystem carbon balance (NECB) over time for the
556 equilibrium, paleo-informed, increased fire frequency, and decreased fire frequency scenarios
557 over the last 4561 years. Positive numbers indicate a cumulative net sink while negative
558 numbers indicate a cumulative net source.
559

560
561 **Figure 5.** Total NECB (NPP - Rh - fire emissions) for the 4561-year simulated period and for
562 each of the partially paleo-informed scenarios (Paleo_500, Paleo_1000, etc. in Figure 1). Each
563 partially paleo-informed scenario branches from the equilibrium scenario in the year indicated on
564 the x-axis. For example, the 500-year record only includes fires that occurred in the most recent
565 500 years of the paleo-fire record (1511-2009 CE).
566
567
568